
What multilevel parallel Programs do when you are not
watching: A Performance Analysis Case Study

comparing MPUOpenMP, MLP, and nested OpenMP

Gabrieie Jost", Jesus L a b a d and Judit Gimenez2

"AS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 USA
riost@nas.nasa.cov

'European Center for Parallelism of Barcelona-Technical University of Catalonia (CEPBA-

(jesusjudit } @cepba.upc.es
LPC), cr. Jordi Girona 1-3, Modul D6,08034 - Barcelona Spain

1 Extended Abstract

With the currenr trend h padkl cxmpckr xchitpctllrps towards clusters of shared
memory symmetric multi-processors, parallel programming techniques have evolved
that support parallelism beyond a single level. When comparing the performance of
applications based on different programming paradigms, it is important to differentiate
between the inftuence of the programming model itself and other factors, such as im-
plementation specific behavior of the operating system (OS) or architectural issues.
Rewriting-a large scientific application in order to employ a new programming para-
d i m is usually a time consuming and error prone task. Before embarking on such an
endeavor it is important to determine that there is really a gain that would not be pos-
sibie wirh &e Luiierit iiiip!c;..eatxici. .4 drt2iled performance analysis is crucial to
clarify these issues.

The multilevel programming paradi=ps considered in this study are hybrid
MPVOpenMP, MLP, and nested Openh4P. The hybrid MPYOpenME' approach is
based on using MPI [7] for the coarse grained parallelization and OpenMP 191 for fine
grained loop level parallelism. The MPI programming paradim assumes a private
address space for each process. Data is transferred by explicitly exchanging messages
via calls to the MPI library. This model was originally designed for distributed mem-
ory architectures but is also suitable for shared memory systems. The second para-
di,p under consideration is MLP which was developed by Taft [1 11. The approach is
similar to MPUOpenMP, using a mix of coarse grain process level paralleliiation and
loop level OpenMP parallelization. As it is the case with MPI, a private address space
is assumed for each process. The MLP approach was developed for ccNUMA archi-
tectures and explicitly takes advantage of the availability of shared memory. A shared
memory arena which is accessible by all processes is required. Communication is done
by reading from and writing to the shared memory. Libraries supporting the MLP
paradigm usually provide routines for process creation, shared memory allocation, and

* The author is an employee of Computer Sciences Corporation

process synchronization. The third paradigm employed in our study is the usage of
nested OpenMP directives. Even though the nesting of parallelization directives is
permitted by the OpenMP standard, it is not supported by many compilers. The
NanosCompiler [3] was developed to show the feasibility of exploiting nested paral-
lelism in OpenMP and is used in our study. The NanosCompiler accepts Fortran-77
code containing OpenMP directives and generates plain Fortran-77 code with calls to
the NanosCompiler thread library NthLib [6]. NthLib supports multilevel parallel
execr.f;cn snch t!2t imer pd!~! cczstn~ts are ~ c t beins -= seridized. The p r o p m -
ming model supports several extensions to the OpenMP standard allowing the user to
create groups of threads and to control the allocation of work to the participating
threads.

We describe the performance analysis of the multi-zone versions of the NAS Paral-
lel Benchmarks the NPB-MZ [12]. The purpose of the NPB-MZ is to capture the
multiple levels of parallelism inherent in many full scale CFD applications. Multi-zone
versions of the well known NAS Parallel Benchmarks [2] LU, BT, and SP were de-
veloped by dividing the discretization mesh into a two-dimensional tiling of three-
dimensional zones. Within all zones the LU, BT, and SP problems are solved to ad-
vance the time-dependent solution. The same kernel solvers are used in the multi-zone
codes as in the single-zone codes. Exchange of boundary values takes place after each
time step. Reference implementations employing the MPVOpenMP and the MLP
programming paradigm are part of the benchmarks distribution. A discussion of the
performance characteristics of these codes is presented in [5]. The nested OpenMP
implementation we used in our study is based on NanosCompiler extensions and is
discussed in [11.

Our tests are executed on an SGI Origin 3000 located at the NASA . h e s Research
Center. The SGI Origin 3000 is a CCNUMA architecture with 4 CPUs per node. The
CPUs are of type R12K with a clock rate of 400 MHz, 2 GB of local memory per
node, and 8 MB of L2 cache. The MLP implementations use the SMPlib library as
described in [4]. The MIPSpro 7.4 Fortran Compiler is used to compile the hybrid
codes and the NanosCompiler for the nested OpenMP code. The compiler options -mp
-03 and -64 are set in all cases.

We use the Paraver [IO] performance analysis system which is being developed and
maintained at CEPBA-UPC. It consists of a graphical user interface to obtain a quali-
tative view of the program execution and an analysis module for 3 detailed quantita-
tive performance analysis. The Paraver tracing package OMPItrace [8] provides a
simple but very flexible format. Traces are composed of state records, events, and
communications, each with an associated time stamp.

We ran the different implementations of LU-MZ and BT-MZ for 20 iterations of
various problem classes. In Figure 1 we show their scalability for benchmark class B
which has an aggregate size of 304x208~17 grid points The reported performance is
the best that was achieved over different combinations of processes and threads or
thread groups in case of nested OpenMP. For LU-MZ the scalability of the MLP
based implementation is clearly superior to MPVOpenMP and nested OpenMP. For
BT-MZ, the MLP and nested OpenMP show similar scalability while MPUOpenMP
lags behind for a large number of CPUs.

i

LU-MZ Class B Performance

.

BT-MZ Class 5 Peformance

8x1 16x1 16x2 16x4 16x8

Number of CPUs (NPxNT)

Q
$30

8 20 n

5
0 3 ?c? -
= o

4x1 16x1 16x4 16x8

Number of CPUs (NPxNT)

Figure 1: Performance of LU-MZ and BT-MZ Class B. The number of CPUs is indi-
cated as the number of processes @IT) times the number of threads (NT).

We will &st examine LU-MZ and investigate the performance difference between
MLP and MPJlOpenMF'. The performance difference between MPUOpenMP and
XZF' 8;: 13'2 CPLk CZ-I d w he. observe on 64 CPUs, employing 8 processes with 8
threads each. We obtained traces for the smaller confi,mation and computed vanous
statistics. In s~mmary, the statistics indicate the following:

Some of the subroutines take considerably (50%) more time in h4PUOpenMP
than in MLP.
The routines taking more time in MPI/OpenMp are computation bound. Com-
munication time is therefore not the issue for the time difference.
There is no significant difference (< 0.001%) in the number of issued instruc-
tions between the MPI/OpenMP and MLP in the time consuming routines.
C o r i t ~ t i x x i ! cemp!e+ity is therefore not an issue for the time difference.
The difference in the number of L2 cache misses is slightly in favor ot
MF'UOpenMP which has about 1 % less misses.

A clue to the reason for the performance difference can be obtained by examining the
duration of the OpenMP workshares in both implementations. An example is shown in
Figure 2 which displays a zoom into a timeline view of the duration of workshares for
2 processes with 8 threads each The duration of the workshares is indicated by a gra-
dient color scale. The scale ranges form 30 ms (light shading) to 60 ms (dark shading)
to make the difference between the different threads apparent. The MPYOpenMP code
clearly shows a bimodal pattern. depending on the thread number. Four of the eight
threads of each process show shorter and four show longer durations. Those with short
durations are very similar to the MLP case. Those with the long durations are respon-
sible for the increased amount of time in certain subroutines in the MPUOpenMP
implementations. The difference in the number of instructions and L2 cache misses
across the threads in the MPUOpenMP code is less than 3% and can not account for
the time difference. When jointly looking at the time taken by the OpenMP work-
shares within a given subroutine, the number of instructions and the number of L2
misses across threads we can estimate that the same number of L2 misses take a fairly
different time o n different threads. An explanation for this is, that some threads re-

Figure 2: Timeline view of the work sharing duration within MPUOpenMP (left}
and MLP (right) code for LU-MZ. The view zooms in on 2 processes with 8 threads
each. The thread number is indicated on the vertical axis, the time on the horizontal
mis. Light shading indicates OpenMP workshares with short durations, darker
shading indicates longer workshares. MPVOpenMP shows a bimodal pattern de-
pending on the thread, which is not present in MLP

quire remote memory access due to the way the data is placed relative to the CPU that
they run on.

When combining M?I and OpenMP on the SGI Origin, care has to be taken how to
place the threads onto the CPUs. By default the OS will place the MPI processes onto
consecutive CPUs. When new threads are being forked they may end up running on
CPUs far away from the master MPI process, which can potentially decrease the per-
formance due to remote memory access time. There is the possibility for the user to
specify gaps between the MPI processes to allow for future threads, but it seems that a
gap of 8, necessary for the 8x8 run, was not handled correctly, either by the user or by
the OS. The traces indicate that four of the threads are placed correctly on consecu-
tive CPUs, but the other four are placed further away. The problem does not occur in
the MLP code. The MLP programming paradim was designed for ccNUMA architec-
tures. During the start-up phase the MLP library issues system calls which pin a thread
to a particular CPU for the duration of the run to assure efficient memory access.
When using the same system call within the MPVOpenMP implementation the per-
formance was very similar to MLP (see Figure 4).

Next we investigate the lack of scalability of LU-MZ using nested OpenMP. We
gathered a trace employing 16 groups of 8 threads. Figure 4 shows a timeline view
that identifies the parallel functions executed by each thread. We can identify that 16
threads execute at the outermost parallelism level, each of them generating work for 8
threads. The first two iterations are very Iong and imbalanced. The foUowing iterations
are much faster and are relatively balanced. There is no algorithmic reason for a work-
load imbalance within the first two iterations, nor for the fact that they should con-
sume more time than the following iterations. We suspect that due to the interaction
between the NthLib and the OS it takes several iterations until the data is placed onto
the appropriate memory modules. The BT-MZ benchmark implementation differs
from LU-MZ in that it executes one time step before the actual iteration loop. The
purpose is to place the data appropriately before the timing begins. We have added
the execution of two time steps before the timed iteration loop to the LU-MZ code.

f

F b g e 3: Time line view of LU-MZ using nested OpenMP. The view shows the
time spent in different compiler generated parallel functions. Different shadings
indicate different parallel functions. The dashed lines mark the first two itera-
tions, the soiid lines mark 5 of the following iterations

In Figure 4 we show the timings of R p r e 1 and the timings obtained after adding the
call to pin-to-node to MPI/OpenMP and after adding 2 time steps before the iteration
h? tn the nested OpenMP code. We conclude that after removing OS and runtime
library effects, the performance of the three implementations IS very simiiar. Zic P I -

forrnance increase was obtained with only minor changes to the user code. In the full
paper we plan to include timing results for other benchmark classes and discuss load
balancing issues.

m MLP 1 25 ONested OmMP

I 8x1 16x1 16x2 16x4 16x8

Number of CPUs (NPxNT)

BT-MZ Class B Performance I
MPVOpenMP

m MLP
I Onested OpenMP

4x1 16x1 16x4 16x8

Number of CPUs (NPxNT)

Figure 4: Performance of LU-MZ and BT-MZ Class B. The number of CPUs is indicated as
the number of processes (NP) times the number of threads (NT)

Acknowledgements

This work was supported by NASA contract DTTS59-99-D-O0437/A618 12D with
Computer Sciences CorporatiodAMTI, by the Spanish Ministry of Science and Tech-
nology, by the European Union FEDER program under contract TIC200 1 -0995-C02-
01, and by the European Center for Parallelism of Barcelona (CEPBA).

- _

Keferences

1.

2.

3.

4.

5 .

6.

7.
8.
9.
10.
11.

12.

E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost, Employing Nested OpenMP for the
Parallelization of Multi-Zone Computational Fluid Dynamics Applications, to appear in the
Proceedings of IF'DPS 2004, Santa Fe, New Mexico, USA, April 2004
D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, The NAS
Parallel Benchmarks 2.0, RNR-95-020, NASA Ames Research Center, I995
M. Gonzalez, E. Ayguade, X. Martorell and J. Labarta, N. Navarro and J. Oliver.
NanosCompiler: Supporting Flexible Multilevel Parallelism in OpenMP, Concurretic)::
Practice and Experience. Special lssue on OpenMP. vol. 12, no. 12. pp. 1205-1218. Octo-
ber 2000
H. Jin, G. Jost, Pelfomzance Evaluation of Remote Memory Access Progi-anzming on Sha-
red Memorj Parallel Computer Architectures, NAS Technical report WAS-03-001, NASA
Ames Research Center, Moffett Field, CA, 2003
H. Jin. R. F. Van der Wijngaar, Performance Characteristics of the Multi-Zone NAS Para-
llel Benchmarkr, to appear in the Proceedings of IPDPS04, Santa Fe, New Mexico, USA.
April 2004
X. Martorell, E. AyguadC, N. Navarro, J. Corbalan, M. Gonzalez and J. Labarta. Thread
ForWjoin Techniques for Multi-level Parallelism Exploitation in NUM.4 Multiprocessors.
13'h International Conference on Supercomputing (ICS'99), Rhodes (Greece). pp. 294-
301. June 1999
MPI 1.1 Standard. http://www-unix.mcs.anl.~o-o\f/nipi/mpich
OMPItrace User's Guide, https://www.cepba.upc.es/paraver/manual-i.htrn
OpenMP Fortran Application Program Interface, httn://u,ww.o~enmn.o~~.
Paraver, http://www.cepba.upc.es/paraver
I. Taft, Achieving 60 GFLOP/s on tlte Production CFD Code OVERFLOW-MLP, Parallel
Computing, 27 (2001) 521
R. F. Van Der Wijngaart, H. Jin, '"AS Parallel Benchmarh, Multi-Zone Versions, " NAS
Technical Report NAS-03-010, NASA Ames Research Center, Moffett Field, CA, 2003

